A Concept: 8 GeV CW Linac, Staged Approach Milorad Popovic # DRAFT #### **Abstract** This note describes a concept for a CW Proton Linac on the Fermilab site. Except for the RFQ, the linac is based on superconducting technology. The linac has three segments that accelerate to 1 GeV, 3 GeV, and 8 GeV, respectively. It is located near the existing Fermilab Proton Source so that each section of the linac can be used as soon as it is commissioned. The whole design is based on the designs suggested for the Proton Driver and Project X. The suggested site and linac segmentation allow for the construction to start as soon as approval is granted. Additional benefits come from the fact that the present linac (the oldest machine in the Fermilab complex) is replaced, and the functionality of the existing Proton Source is preserved for the future. #### Introduction In order to create more opportunities for beam-based experiments using existing Fermilab infrastructure and in light of the expressed interest in a proton source capable of delivering multi-megawatt beam, a linac similar in design to Project X, but located near the existing linac, is proposed. The idea is to be able to use the newly constructed portion of the linac to feed the existing 8 GeV program with increased intensity, as well as partially reusing existing infrastructure. The energy profile of the beam as suggested for Project X is shown in Figure 1. Figure 1. The arrows show the energies of the beam at the indicated distances from the ion source. The proposed location of the new linac is indicated in Figure 2. The present 400-MeV linac (indicated by the blue line in Figure 2) is \sim 150 meters long and will be replaced with the new linac starting \sim 90 meters further upstream (as indicated by the red line in Figure 2). This will allow use of the existing tunnels for the linac and the beam transport line to inject 1-GeV beam into the Booster. The injection can be bunch to bucket, as shown later. As in the case of the 400-MeV linac upgrade, the increase in injection energy will decrease the space charge tune shift in the Booster. For example, for typical present-day beam intensity and normalized transverse emittances, the space charge tune shift will decrease from 0.33 to 0.18. That in turn will allow more intense Booster beam at 8 GeV. This will also reduce the needed frequency swing of the RF cavities, allowing an increase of the total RF voltage per turn. The second blue line indicates a CW linac from 1 to 3 GeV, and the long yellow line directed toward MI30 shows the position of the 3 to 8 GeV linac. Figure 2. Proposed layout of the new linac on the Fermilab site. In the rest of this note, a plan for staging of the new linac and the resultant effect on operation of the complex at each stage are described. ## **Low Energy Linac – Concepts** The low energy portion of the linac complex consists of ion source(s), LEBT, RFQ, MEBT, and linac up to some energy. For a high power CW machine with multiple users, redundancy in the form of multiple ion sources is needed. Also needed to provide the various required beam time structures is a wideband low energy beam chopping system. All these elements are indicated in Figure 3 and will be described in the following sections # H- Source LEBT + Electrostatic Chopper(s) 81 MHz RFQ, Magnet, Funnel Figure 3. #### Ion Source and LEBT It is expected that the ion source for Project X will be a DC source with a H- current of ~5 mA. A source with these parameters is currently available from D-Pace, Canada. Based on measured output parameters from the source, it can be shown that this beam can be transported to the entrance of the RFQ with a LEBT based on a single solenoid. Figure 4 shows the concept of LEBT on the left, with a spare source in the standby position. On the right of Figure 4 is the output of a Trace3d run simulating the LEBT. Figure 4. The solenoid is \sim 20 cm long with a field of 3.65 kG and an inner radius of 7 cm. The whole length of the LEBT is less than 0.5m. ### **LEBT Chopper** Inside the pipe along the solenoid slides for tuning purposes will be four series of parallel plates to form vertical and horizontal kickers. Each plate is made of twenty separate 1.5 cm wide and 4 cm long plates. The gap between the two planes is 3 cm. Figure 3. Chopper concept in vertical plane is pictured along with the SuperFish simulation of a ten-plate chopper with \pm 300 volts on plates 1-5 and 8-10 and zero voltage on plates 6 and 7. If needed, a laser photo detachment is envisioned as a way of sharpening beam edges. The higher repetition rates of the laser beam can be achieved using optical delay lines and multi passing of the same laser pulse. The photo detachment can be applied at 30 keV, 200 keV and 2 MeV. The aim is to remove the majority of the unwanted beam at 30 keV using electrostatic choppers. The assumption is that driver circuit(s) can deliver \pm 300 volts with rise/fall time of \pm 8 ns and a repetition rate up to 20MHz continually. #### **RFQ** One of the requirements of Project X is the ability to feed several experiments in parallel with flexible bunch structures. The highest beam repetition rate is expected to be \sim 20-30 MHz for kaons with a maximum bunch intensity up to 1.9E+8 protons. Following these requirements and the desire to have bunch separation long enough to make bunch by bunch kickers possible, we consider 81MHz RFQ. For input energy to the RFQ we chose 30 keV, beam energy from the existing D-Pace ion source and for the output energy, to stay below neutron production, we chose 2 MeV. Figure 4 shows graphical outputs from the Parteq simulation code Figure 4. Horizontal, Vertical, Phase and Energy envelopes. The beam profiles at 2MeV. Tables below show basic design parameters of RFQ. | Using the following parameters to create Parmteq input file | Section lengths Radial matching section = 5.64955674 cm | |---|--| | Particle symbol = H- | Shaper = 41.5701789 cm | | Frequency = 81.25 MHz | Gentle buncher = 83.9719811 cm | | Beam current = 1 mA | Accelerating section = 265.101211 cm | | Normalized RMS emittance = 0.2 pi mm mrad | Transition region = 10.3606282 cm | | | Total = 406.653556 cm | | Input energy = 0.02752616 MeV | | | Shaper energy = 0.03252616 MeV | Power estimates | | Shaper phase = -81.2368007 deg | Copper power = 78.4952518 kW | | Gentle-buncher energy = 0.3 MeV | Beam power = 1.97247384 kW | | Gentle-buncher phase = -30 deg | Total power = 78.4678412 kW | | | Capture 98.6% | | Final energy = 2 MeV | | | Final synchronous phase = -30 deg | z B phi m V W A a psi | | Vane voltage = 0.106381129 MV | -5.650 0.674 -90.000 1.000 0.106 0.028 0.000 4.784 360.000 | | Accelerating efficiency = 0.75978545 | 0.000 13.477 -90.000 1.000 0.106 0.028 0.000 1.070 360.000
10.393 13.477 -87.809 1.032 0.106 0.028 0.010 1.053 319.624 | | · · · · · · · · · · · · · · · · · · · | 83.560 13.477 -59.562 1.186 0.106 0.071 0.104 0.982 187.142 | | 3 , | 91.766 13.477 -53.441 1.235 0.106 0.090 0.142 0.959 166.056
97.821 13.477 -48.860 1.293 0.106 0.109 0.183 0.935 150.795 | | Number of radial matching cells = 4 | 102.621 13.477 -45.276 1.360 0.106 0.128 0.228 0.907 139.091 | | Transition cell with no m=1 section | 106.599 13.477 -42.375 1.437 0.106 0.147 0.276 0.877 129.749
109.994 13.477 -39.966 1.525 0.106 0.166 0.328 0.844 122.066 | | | 112.957 13.477 -37.924 1.628 0.106 0.185 0.382 0.808 115.605 | | | 115.365 13.477 -30.100 1.745 0.100 0.204 0.435 0.705 110.072 | | | 120.090 13.477 -33.276 2.070 0.106 0.243 0.560 0.679 101.035 | | | 122.053 13.477 -32.068 2.292 0.106 0.262 0.624 0.627 97.279 | | | 123.863 13.477 -30.982 2.586 0.106 0.281 0.691 0.568 93.912
125.542 13.477 -30.000 3.000 0.106 0.300 0.760 0.500 90.873 | | | 390.643 13.477 -30.000 3.000 0.106 2.000 0.794 0.481 90.873 | These tables are outputs of the design code RFQuick and the tracking code Parmteq. These are very detailed tables, but there are a few parameters worth noticing. The total RFQ length is around 4 meters, the capture efficiency is ~98% and the beam is fully bunched already at 200 keV. The total RF power (to copper and the beam) is ~80 kW. This means that the RFQ can be made of copper and run as a CW device. The power source can be one of the existing RF power vacuum tubes, and the removal of 80 kW of heat from a four meter long object does not seem to be a very challenging task. Figure 5. Figure on the left shows a single arm, and the arrows indicate possible laser ports. Once this configuration of LEBT and MEBT is adopted, there are several options that we can choose from: - A single arm, with a single 81 MHz RFQ. In this case there is no redundancy, and it must be possible to change the ion source quickly. - Two identical 81 MHz RFQs, with one in standby for fast switching. This assumes that both systems have H- sources. - Two identical 81MHz RFQs, with one arm having an H- source and other a proton source so that the two systems can be switched fast depending on the user's needs. - Two identical 81 MHz RFQs, with both arms having H- sources and the last dipole in the MEBT made as a funneling system so that the linac gets 162 MHz structure from the beginning, if there is a need for such a beam. The dipoles in the MEBT have edge focusing, the straights do not have to be long, and the bending angles can be from 30-70 degrees depending on how much dispersion is needed for a momentum collimation. Simple simulations show that, depending on the focusing channel in the 162-MHz linac, output from the RFQ and the MEBT can be made to match the input to the 162 MHz linac. Figure 6 shows quadrupole, as well as solenoid matched beam. Figure 6. Three dipoles systems with zero dispersion for quad as well as the solenoid based 162 MHz linac. This simulation shows that the bunch structure is preserved and the beam can be injected in the 162 MHz accelerating structure. #### 1GeV Linac Beam from 2 MeV to 1 GeV is accelerated in the structures whose total length is shorter than 240 meters. The acceleration from 2 to \sim 10 MeV is achieved using superconducting 162 MHz quarter-wave structures. One option is the five-cavity cryomodule with a total length of \sim 5 meters that was suggested by P. Ostroumov as shown in Figure 6. Figure 6. ANL cryomodule with five cavities and focusing solenoids. The rest of the linac up to 1GeV is based on the 325 and 650MHz superconducting cavities as described in the Project X document. This structure is to be housed in the existing linac tunnel and is to be built as indicated in Figure 1. One of the ways how this can be staged with minimal interruption of existing HEP program will be described in a separate section. The table below summarizes all the options up to 8 GeV. | Section | Freq | Energy (MeV) | Cav/mag/CM | Type | |-------------------------|------|--------------|------------|---------------| | SSR1 (β_G =0.22) | 325 | 10-42 | 20/20/ 2 | SSR, solenoid | | SSR2 (β_G =0.4) | 325 | 42-160 | 40/20/4 | SSR, solenoid | | LB 650 $(\beta_G=0.61)$ | 650 | 160-460 | 36 /24/6 | 5-cell elliptical, doublet | |------------------------------|-----|-----------|-----------|----------------------------| | HB 650 (β _G =0.9) | 650 | 460-3000 | 160/40/20 | 5-cell elliptical, doublet | | HB 650 $(\beta_G=0.9)$ | 650 | 3000-8000 | 224/56/28 | 5-cell elliptical, doublet | The next section describes how the existing Booster can use the new linac. #### **Booster Operation** Presently, the 400 MeV H- beam from the linac is transported along a $\sim 40 \text{ meter}$ transfer line to the Booster tunnel, and about 5×10^{12} protons are injected per Booster cycle. The peak current of the linac beam is $\sim 30 \text{ mA}$, and injection lasts for twelve Booster turns or 26 µs (total injection time 12*2.2 µs). The present line has two twelve-degree vertical bending magnets and two ten-degree horizontal bending magnets that should be replaced if we would like to keep H- stripping at a minimum for the beam at 1GeV. Beam from the new linac will have a peak current of 5 mA, and that will require an injection time longer then 180us if we would like to inject more beam in the Booster than today. To keep H⁻ stripping smaller than 5x10⁻⁵, the two vertical dipoles have to be replaced with 3.5 meter long magnets having a magnetic field of 0.35T. The horizontal magnets would have to have a field of 0.35 T and length of 2.8 meters. The rest of the transfer line can be used as is, with the exception of the injection dogleg system. The middle magnet has to be run with 88% more current or should be replaced with a 50% longer magnet. Another possibility is to use correctors for additional displacement and painting during injection. To avoid field swing dB/B bigger than 1×10^{-4} , the injection time should not be longer than 240 μ s. For the linac current of 5mA, this corresponds to 7.5E+12 protons injected in the Booster. This also insures that space charge tune shift will be half of the value that we have right now at Booster injection. This gives 150 kW of beam power from the Booster at 8GeV and from the Main Injector, 0.5 MW at 120 GeV without slip stacking. With the present 400-MeV injection energy of the Booster, the RF frequency swings from 38 MHz to 53 MHz. For injection at 1GeV, this swing is reduced to an interval from 46.5 to 53MHz. With such a small frequency swing, the cavities can be tuned with just two tuners, and the third tuner can be removed from the cavity. At present, the cavity beam pipe has a diameter of just 2.25 in, the same as the gap in the main magnet. A shorter frequency tuning range will allow the beam pipe to be increased to 3.5 in, thereby significantly decreasing the beam loss on cavities and activation. # Staging from 400MeV to 1GeV The project can start with the building of 90 meters of tunnel, as indicated with a red line in Figure 2. As soon as a new 400 MeV linac is finished, a transfer line along the present linac tunnel can be built and the present 200 & 800 MHz systems can be decommissioned. Existing linac buildings can be used to house new support equipment, and a new accelerating structure can be installed in the present tunnel. The rest of the linac up to 8GeV can be built along straight lines as on Figure 2, with 8 GeV injection to the Main Injector at MI30. At initial stage 3-8 GeV will be pulsed linac with tunnel long enough to accommodate additional | The End - That's all folks | | |----------------------------|--| | OLD STUFF | | | | |